Structural Basis of Prion Protein Conformation Conversion Inhibition
نویسندگان
چکیده
منابع مشابه
Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency
Prion diseases are infectious neurodegenerative disorders of humans and animals caused by misfolded forms of the cellular prion protein PrPC. Prions cause disease by converting PrPC into aggregation-prone PrPSc. Chronic wasting disease (CWD) is the most contagious prion disease with substantial lateral transmission, affecting free-ranging and farmed cervids. Although the PrP primary structure i...
متن کاملCopper-induced structural conversion templates prion protein oligomerization and neurotoxicity
Prion protein (PrP) misfolding and oligomerization are key pathogenic events in prion disease. Copper exposure has been linked to prion pathogenesis; however, its mechanistic basis is unknown. We resolve, with single-molecule precision, the molecular mechanism of Cu(2+)-induced misfolding of PrP under physiological conditions. We also demonstrate that misfolded PrPs serve as seeds for templated...
متن کاملCellular prion protein conformation and function.
In the otherwise highly conserved NMR structures of cellular prion proteins (PrP(C)) from different mammals, species variations in a surface epitope that includes a loop linking a β-strand, β2, with a helix, α2, are associated with NMR manifestations of a dynamic equilibrium between locally different conformations. Here, it is shown that this local dynamic conformational polymorphism in mouse P...
متن کاملConformational conversion of prion protein in prion diseases.
Prion diseases are a group of infectious fatal neurodegenerative diseases. The conformational conversion of a cellular prion protein (PrP(C)) into an abnormal misfolded isoform (PrP(Sc)) is the key event in prion diseases pathology. Under normal conditions, the high-energy barrier separates PrP(C) from PrP(Sc) isoform. However, pathogenic mutations, modifications as well as some cofactors, such...
متن کاملStructural basis for hygromycin B inhibition of protein biosynthesis.
Aminoglycosides are one of the most widely used and clinically important classes of antibiotics that target the ribosome. Hygromycin B is an atypical aminoglycoside antibiotic with unique structural and functional properties. Here we describe the structure of the intact Escherichia coli 70S ribosome in complex with hygromycin B. The antibiotic binds to the mRNA decoding center in the small (30S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Crystallographica Section A Foundations and Advances
سال: 2014
ISSN: 2053-2733
DOI: 10.1107/s2053273314091876